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Summary

Study aim: Mathematical models of the relationship between training and performance facilitate the design of training proto-
cols to achieve performance goals. However, current linear models do not account for nonlinear physiological effects such as 
saturation and over-training. This severely limits their practical applicability, especially for optimizing training strategies. This 
study describes, analyzes, and applies a new nonlinear model to account for these physiological effects.
Material and methods: This study considers the equilibria and step response of the nonlinear differential equation model to 
show its characteristics and trends, optimizes training protocols using genetic algorithms to maximize performance by applying 
the model under various realistic constraints, and presents a case study fitting the model to human performance data.
Results: The nonlinear model captures the saturation and over-training effects; produces realistic training protocols with train-
ing progression, a high-intensity phase, and a taper; and closely fits the experimental performance data. Fitting the model 
parameters to subsets of the data identifies which parameters have the largest variability but reveals that the performance pre-
dictions are relatively consistent.
Conclusions: These findings provide a new mathematical foundation for modeling and optimizing athletic training routines 
subject to an individual’s personal physiology, constraints, and performance goals.
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Introduction

Training is widely accepted as a method to improve 
one’s performance in sports. However, athletes typically 
have to rely on experience, heuristics, and rough approxi-
mations to design their training routines. The current mod-
els available for predicting performance as a function of 
training have significant predictive limitations. A more so-
phisticated model is needed to improve performance pre-
dictions and design optimal training strategies.

Banister proposed a mathematical model that was 
based on a system of linear ordinary differential equa-
tions to quantify the effect of training on performance for 
collegiate swimmers [3, 7]. The model accounted for two 
primary physiological components: the positive effects of 
training, called fitness, and the negative effects of training, 
called fatigue. Several studies have built upon the Ban-
ister model with promising results [5, 6, 8, 10, 12, 15]. 
However, these studies also recognized that the Banister 

model was based on linear systems theory, which limits its 
accuracy and applicability. One concerning feature from 
past linear performance models is that they predict steady-
state performance continues to increase indefinitely with 
increases in training stress [12]. Thus linear performance 
models only capture the temporal or short-term negative 
effects on performance and not the important long-term 
and nonlinear relationships that limit performance. The 
result is that optimal performance cannot be determined 
from a linear performance model since more training al-
ways results in a prediction of better performance. One of 
the important aspects of the present work is the introduc-
tion of a generic mathematical framework to capture a di-
minishing rate of return, or performance saturation, and 
over-training. It is the incorporation of these well-known 
phenomena into a performance modeling framework that 
provides a more realistic and necessary counter balance; 
the inclusion of these phenomena also allows performance 
to be optimized. However, despite the potential concerns 
associated with the linear modeling approach, it has been 
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used to successfully inform training strategies for many 
athletes by approximating optimal recovery times between 
workouts, predicting the success of training regimens, and 
determining how an athlete should taper before a competi-
tion [5, 7, 8, 10, 12, 13, 15].

Some researchers have incorporated nonlinear ele-
ments with Bannister’s linear model to improve prediction 
capabilities [4, 9, 16, 17]. H    ellard et al. incorporated a Hill 
function as a scaling term for stress to model a threshold 
in the stress–response relationship [9]. Busso introduced 
an additional state variable to model the increased effect 
on fatigue of more frequent stresses [4], and his model 
was further studied by Thomas et al. [16, 17].

This article differentiates itself from prior work by 
presenting a novel refinement of Banister’s model that 
incorporates the nonlinear effects of saturation and over-
training without introducing additional state variables or 
auxiliary functions. This enables the model to account for 
nonlinear physiological effects while maintaining an in-
tuitive and simple mathematical structure. The proposed 
model can also be used for designing optimal training 
strategies based on the personal physiology, constraints, 
and performance goals of an individual.

Material and methods

This section introduces the novel nonlinear perform-
ance model, explores how it can be applied to optimize 
training strategies to achieve performance goals under 
various realistic constraints, and describes the experimen-
tal testing strategy.

Many past works have sought to model the effect of 
training on performance with a set of linear ordinary dif-
ferential equations to describe both the positive effects, 
sometimes called fitness f, and negative effects, some-
times called fatigue u, of training on performance. While 
changes in both fitness and fatigue can be viewed as the 
sum of various muscular, psychological, and nutritional 
factors, these models consider changes in fitness and fa-
tigue due only to training. Performance can then be deter-
mined from these values as the difference between fitness 
and fatigue, p = p0 + f − u, where p0 is an individual’s 
performance in an untrained state [7]. While short-term 
performance can often be predicted from this approach, 
it is impossible to find the training stress that results in an 
optimal equilibrium performance. Predictions made using 
this linear modeling approach indicate that equilibrium 
performance indefinitely improves with increases in train-
ing stress, i.e. saturation and the negative effect of over-
training are not captured.

The original performance modeling concept can be 
modified to the following set of nonlinear differential 
equations to capture the effect of training on performance

     1
 ḟ  + – f α = k1σ, (1)

     τ1

     1
 u̇ + – u β = k2σ, (2)

     τ2

where f is fitness as a function of time, u is fatigue as 
a function of time, σ is the training stress impulse as 
a function of time, τ1 and τ2 are time constants, k1 and k2 
are gain terms, α and β are exponents that represent the 
model’s nonlinearities, and t is time. Note that an overdot 
indicates a time derivative. The parameters are person-
specific constants that depend on various physiological 
factors and can be determined from performance tests and 
parameter estimation algorithms.

It is important to note that the linear Banister model can 
be recovered from Eqs. (1) and (2) by setting α = β = 1, 
which results in the form of the linear Banister model pro-
posed by Busso [6] or, with τ1 = k1

−1, τ2 = k2
−1, and p0 = 0, 

the original model proposed by Banister [3]. In essence, 
the introduction of nonlinearity enables additional phe-
nomena, such as saturation and over-training, to be cap-
tured while still accounting for increases and decreases in 
performance due to training.

Constant daily training stress
The special case of a time invariant or constant dai-

ly training stress is useful conceptually to illustrate how 
Eqs. (1) and (2) capture the effects of training saturation 
and over-training. For the results that follow, the param-
eter values given in Table 1 were used. Note that these val-
ues were chosen arbitrarily to produce a realistic response, 
but the model parameters are dependent on an individual’s 
physiological characteristics.

If a constant daily training stress is applied, perform-
ance will eventually stagnate or plateau. This case can 
be explored from the equilibria of Eqs. (1) and (2) when 
ḟ  = u̇ = 0. The steady-state performance can then be ob-
tained analytically and becomes

 p̃ = p0 + (k1τ1σ)1/α – (k2τ2σ)1/β.  (3) 

The stress that causes the maximum performance is 
found from dp̃/dσ = 0, which gives

 (4)

Another important stress value is the training stress 
that would result in no performance improvement. This 
value is obtained by equating the equilibria of Eqs. (1) and 
(2) to obtain the following expression

 (5)
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Parameter Value Units
τ1 61 [performance]α – 1 [time]
τ2 5.5 [performance]β – 1 [time]
α 1.16 –
β 0.85 –
k1 0.10 [performance][time]–1 [stress]–1

k2 0.12 [performance][time]–1 [stress]–1

p0 155 [performance]
f0 70.9 [performance]
u0 24.5 [performance]

The steady-state trends for fitness, fatigue, and per-
formance are shown in Figs. 1 and 2. These plots show 
several interesting aspects. First, there are diminishing 
returns in performance as training stress is increased. Per-
formance continues to increase along with increases in 
training stress until σ1 is reached. If training stress is in-
creased beyond σ1, then over-training occurs and perform-
ance deteriorates as more training stress will have a nega-
tive impact on training performance.

The results shown in Figs. 1 and 2 only provide the 
steady-state training and performance relationships. 
However, Fig. 3 compares the temporal evolution of 

performance for the constant daily training stresses of σ1 
and σ2. This figure illustrates both the super-compensation 
effect and a plateau in performance after a sufficient pe-
riod of time.

The analysis presented in this section has only consid-
ered the case of a constant daily training stress to provide 
a simple example that highlights the ability of the nonlin-
ear performance model to capture saturation effects and 
over-training. However, the more general case, where σ 
is allowed to vary with time, is of greater interest. Allow-
ing σ to vary as a function of time more accurately de-
scribes practical scenarios in which an individual’s train-
ing schedule changes on a daily basis. Furthermore, since 
the nonlinear performance model captures realistic phe-
nomena, such as saturation and over-training, the model 

Table 1. Parameter values and initial conditions for simula-
tions and examples. The units for performance, stress, and 
time are arbitrary, but the parameter values presented in this 
table correspond to reasonable values using days for [time], 
BikeScore [14] for [stress], and a cyclist’s maximum possible 
average power output in Watts over a 10-minute interval for 
[performance]. The parameters f0 and u0 are the initial condi-
tions for fitness and fatigue, respectively

Fig. 1. Plot illustrating how the nonlinear performance 
model captures the physiological phenomena of saturation 
and over-training. For this plot, the special case of a constant 
daily training stress is considered
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Fig. 2. Plot that depicts the compounding effects of fatigue 
and diminishing returns of fitness gains with increases in 
training stress. Maximum performance is achieved when 
p̃ = p0 + f̃  − ũ is maximized, and no performance gains are 
achieved when f̃  = ũ

Fig. 3. Plot illustrating the super-compensation effect and 
plateau in performance for the special case of a constant daily 
training stress
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can be used to predict performance and design an optimal 
training routine. Thus, the next section considers different 
scenarios where σ(t) can be varied to optimize perform-
ance for athletes based on their personal physiological 
characteristics, constraints, and performance goals.

Constrained optimized training
The constant daily training stress that was investi-

gated in the previous section is useful for understanding 
the model conceptually, but it is not necessarily optimal 
for use as a training tool. The typical training strategy that 
athletes employ to prepare for an event is a period of base 
training with progressively increasing training intensity, 
followed by a build-up phase at relatively high intensity, 
and then finishing with a taper phase to reduce fatigue on 
the competition date. This strategy helps the individual to 
increase their fitness gradually to avoid injury while maxi-
mizing performance on race day.

Depending on an individual’s personal physiological 
characteristics, constraints, and performance goals, the op-
timal training program can look very different. To explore 
how the nonlinear model can be applied to optimize a train-
ing program and to illustrate the influence of various con-
straints, this section explores a specific scenario: the case of 
optimizing the daily training stresses for twelve consecutive 
weeks of training to maximize performance for a cycling 
race on the 85th day. The parameter values that were kept 
constant during the optimization process are provided in Ta-
ble 1. The optimization was performed using genetic algo-
rithms, which are heuristic optimization algorithms based 
on the idea of natural selection [2, 11]. Genetic algorithms 
are a popular optimization method for nonlinear problems. 
The genetic algorithms used tournament selection, BLX-α 
crossover, Gaussian mutation, external penalty functions to 
enforce constraints, and were run ten times for each case 
studied to ensure consistent results.

Constant daily training stress constraint  
with tapering

Perhaps the simplest improvement to the constant daily 
training stress routine described earlier is to allow a short 
rest period prior to race day. This period of rest or limited 
exercise is typically referred to as a taper and allows for 
the dissipation of accumulated fatigue, thus improving fi-
nal performance. The considerably shorter time constant 
of the fatigue τ2, relative to that of the fitness τ1, results 
in improved performance after short rest periods where 
quick recovery from fatigue outweighs slower losses in 
fitness. The simplest taper scheme is to stop training a few 
days before the end of the season. Figure 4 illustrates an 
example of this approach, with a notable increase in per-
formance due to tapering. To compare the results with the 
previously described constant daily stress routine, two 
scenarios were considered: 1) using the value of σ1 found 

in Eq. (4); and 2) using the stress that produced the highest 
performance at the end of the season for each taper length. 
The results of these scenarios can be seen in Fig. 5.

From these results, it is clear that the constant daily 
training stress scenario is improved by simply implement-
ing a taper. Increasing the length of this taper can improve 
performance by reducing fatigue, up until the point where 
the rate of fitness atrophy begins to outweigh the rate of 
fatigue loss. In the provided example, this optimal ta-
per length is roughly 10 days, as shown by the peak in 
Fig. 5(a). An additional intriguing result can be observed 
regarding the case where constant daily training stress 
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Fig. 4. Plots showing (a) performance and (b) daily training 
stress for a 7-day taper. The benefit of the taper can be observed 
by examining the considerable increase in performance 
following the onset of the taper

Fig. 5. Plots showing (a) final performance and (b) constant 
daily training stress for various taper lengths for two cases: 
1) the constant daily training stress σ1 calculated by Eq. (4) 
(solid blue line); and 2) the constant daily training stress that 
produces the highest performance at the end of the season for 
a given taper length (dashed red line)
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leading up to the taper was optimized to maximize final 
performance for each taper length: allowing constant daily 
training stress to increase without bound does not result 
in unbounded performance gains. In this scenario, as ta-
per length increases, larger training stress values are pre-
scribed, as shown in Fig. 5(b). However, the fitness gains 
due to higher stresses and fatigue reduction due to a longer 
taper are balanced or outweighed by the increased fatigue 
due to higher stresses and fitness atrophy due to a longer 
taper. The result of this effect can be seen in the downturn 
of the dashed curve in Fig. 5(a).

Uniform weekly schedule constraint
This section considers the case where an athlete might 

be constrained by their routine weekly schedule. In par-
ticular, we investigated the optimal training schedule 
when the daily training stresses were allowed to vary 
within the week, but every week was required to be identi-
cal. This creates a periodic training regimen with a seven 
day period. When relating this uniform weekly schedule 
to the uniform daily training stress case, the steady-state 
performance is of interest. The repeated variation within 
each week creates a periodic steady-state solution. Fig-
ure 6 shows the steady-state performance for the uniform 
weekly schedule that maximizes the average weekly per-
formance in steady-state. These results demonstrate that 
the average performance value obtained using the uniform 
weekly schedule constraint is identical to the optimal per-
formance value for the constant daily stress scenario with 
σ = σ1 from Eq. (4). This indicates that there is not neces-
sarily a unique solution that produces a maximum average 
performance when prescribing a uniform weekly training 
schedule constraint.

Maximum daily training stress constraint
From a practical standpoint, an individual only has 

a limited number of hours to train each day. Thus it is 
sensible to limit the training stress to a maximum allow-
able value that could reasonably be performed each day. 
For this purpose, we used a training stress of σallow = 300, 
which roughly equates to 5–6 hours of training on a bicy-
cle. Figure 7 shows a training routine that results in opti-
mal performance on race day, given a maximum training 
stress of σallow = 300 as the only constraint. From these 
results, it is interesting to note that the optimal training 
routine does not contain a build-up in the daily training 
stress; thus, this constraint alone does not allow for a real-
istic progression in the training load as fitness improves. 
The optimal training routine requires training at the maxi-
mal allowable training stress every day until the taper be-
gins. In order to develop more realistic training protocols, 
additional constraints must be considered.

Training load constraints
The constraints presented in the previous sections dem-

onstrate important aspects of the training–performance 
relationship, but they do not yield truly realistic training 
plans. This section considers the notion of a training load 
constraint, which results in optimal training plans that seek 
to balance performance gains with injury risk mitigation. 
The training plans that result from considering these train-
ing load constraints begin to resemble the training plans 
that coaches and traditional wisdom would recommend.

Maximum ATL constraint. Acute training load (ATL) 
is commonly used by athletes to quantify the short-term 
effects of fatigue [1]. This section seeks to optimize per-
formance where daily training stress is constrained by 
both ATL and a maximum daily training stress. ATL can 
be defined as
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Fig. 6. Plots showing (a) performance p and mean 
performance p̄  and (b) prescribed daily training stress σ for 
the case of a uniform weekly training stress constraint. The 
results shown occur after the system has reached a steady-
state. Three weeks are shown to illustrate the periodic nature 
of the result

Fig. 7. Plots depicting (a) performance and (b) prescribed 
daily training stress for the case of a maximum daily training 
stress constraint σallow = 300
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 An + 1 = An + (σn – An) (1 – e–1/τ), (6)
where the acute training load An and the daily training 
stress σn on the nth day were used along with the time con-
stant τ = 7 days to determine the acute training load An + 1 
on day n + 1.

Figure 8 depicts an example where the ATL was con-
strained to a maximum value of ATLallow = 200 and the 
daily training stress was constrained to a maximum value 
of σallow = 300. It is interesting to note that the daily train-
ing stress is relatively high at the initial stages of train-
ing; therefore, the ATL constraint alone does not allow for 
a progressive build-up in the training load as fitness im-
proves. However, after an initial transient period, the daily 
training stress is limited throughout the middle stages of 
training by the ATL constraint and begins to resemble 
a more realistic prescribed training strategy.

The effect of varying the maximum ATL constraint 
is investigated in Figure 9. As expected, increasing the 
maximum ATL constraint increases final performance at 
a diminishing rate of return, but also increases the risk of 
fatigue-related injury.

Person-specific fatigue constraint. The ATL metric is 
a popular standardized metric, but it is not person-specific 
and is instead based on a generic time constant. An al-
ternative approach is to use a person-specific constraint 
based on fatigue u from the nonlinear model. For example, 
the constraint explored in this section is defined as

 σallow = 300(0.1 + 0.9e–u/800). (7)

This fatigue-based constraint is depicted in Fig. 10. 
This constraint allows for fairly high training stress when 
fatigue is low, but as fatigue increases, the allowable train-
ing stress asymptotically decreases.

The resulting optimal training routine and performance 
are shown in Fig. 11. Similar to the ATL constraint, the 
stresses are lower throughout the middle of the training 
program, but there is no progression in training load dur-
ing the early stages of training. Therefore, these results in-
dicate that an additional constraint is required to produce 
a progression in the allowable stresses during the earlier 
stages of training.

Maximum ATL/CTL constraint. Chronic training load 
(CTL) is often calculated in conjunction with ATL to as-
sess athletic fatigue [1]. While ATL considers the short-
term effects of fatigue, CTL considers the longer-term 
effects. This section considers a constraint that is based 
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on the ratio of ATL/CTL. Conceptually, this constraint en-
sures that a longer period of training sufficiently prepares 
an individual for more intense short-term training effects. 
CTL can be calculated as

 Cn + 1 = Cn + (σn – Cn) (1 – e–1/τ), (8)

where the chronic training load Cn and the daily train-
ing stress σn on the nth day were used along with the time 

constant τ = 42 days to determine the chronic training load 
Cn + 1 on day n + 1.

An optimal training routine that considers a maximum 
ATL/CTL constraint is depicted in Fig. 12. It is interesting 
to note that this constraint does a better job than previ-
ous constraints in terms of implementing a progression in 
training load during the early stages of the training pro-
gram. However, as shown in this example, the training 
load during the first few days might still be relatively high; 
this was true for other ATL/CTL ratios that were also in-
vestigated. The training stress during the middle stages of 
the training program eventually becomes the maximal al-
lowable daily value until the start of the taper.

Person-specific fatigue/fitness constraint. Analogous 
to the ATL/CTL constraint is a maximum fatigue/fitness 
constraint, which has the additional benefit of being per-
son-specific. Figure 13 shows that this fatigue/fitness con-
straint provides somewhat of a progression in the train-
ing stress at the onset of a training program. The behavior 
is similar to the case where the ATL/CTL ratio is used as 
a constraint. After a relatively large training stress during 
the first few days of training, the fatigue/fitness ratio forces 
progression in training stress until reaching the maximum 
stress of σallow = 300, with a taper occurring at the end.

Training progression constraint
It is common for most training programs to progress 

the training load during the early stages of training. This 
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Fig. 13. Plots showing (a) performance, (b) u/f, and (c) daily 
training stress as optimized using the u/f constraint. A daily 
maximum stress of σallow = 300 and (u/f )allow = 0.8 were 
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strategy helps the individual improve their fitness before 
higher-stress loads are introduced and is often used to 
avoid injury. This section describes a constraint that im-
proves upon using the ATL/CTL or the u/f ratio. More spe-
cifically, this section investigates constraining the training 
stress as a function of fitness. Intuitively, when fitness is 
low, the allowable stress should be low to limit the chance 
of injury, while as fitness increases, the allowable stress 
should approach a reasonable maximum value. An exam-
ple of such a relationship is

 σallow = 300(1 – 0.9e–f /150). (9)

This constraint is depicted in Fig. 14. The resulting 
optimal training routine and performance are shown in 
Fig. 15. As shown, this constraint provides a very nice 
build-up effect during the early stages of training.

Combination of constraints
In order to develop truly realistic optimal training rou-

tines, a combination of constraints must be applied. For 
example, the fatigue-based maximum stress constraint il-
lustrated in Fig. 10, the maximum fatigue/fitness ratio con-
straint illustrated in Fig. 13(b), and the fitness-based maxi-
mum stress constraint illustrated in Fig. 14 were applied 
simultaneously, and the resulting training routine is shown 
in Fig. 16. This combination of constraints is much more 
similar to a training program that would be developed by 
a human coach – it has an initial period of training progres-
sion, mostly constant intensity for the middle of the season, 
and then a reasonable taper period. By incorporating both 
fitness-based and fatigue-based constraints, the routine at-
tempts to avoid injury from effects of both low fitness and 
high fatigue. The fatigue/fitness ratio constraint helps to 
smooth the transition from the training progression at the 
beginning to the relatively constant intensity for the middle 
of the season. Out of all the constraint scenarios that were 
investigated in this study, this combination of constraints 
generates the most realistic optimal training routine.

Human performance data
As shown in the previous sections, the nonlinear model 

can be used to design optimal training programs subject to 
an individual’s personal constraints. However, in order to 
apply the model in practice, the system parameters must 
first be estimated based on measurements of an individ-
ual’s performance. This requires a parameter estimation 
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algorithm, in this case a genetic algorithm, to optimize the 
parameters to fit the data [2, 11]. Parameter estimation was 
performed on a case study of historical data, and an as-
sessment of the model limitations was performed.

Parameter estimation
A retrospective study was conducted using historical 

data from one cyclist in order to assess the parameter esti-
mation strategy and accuracy. Garmin Vector power meter 
pedals were used to measure the power output produced 
by the cyclist (≤ 2% error). The performance was defined 
as the cyclist’s average power output over the most intense 
10-minute interval during each exercise bout, and the train-
ing stress was defined using the BikeScore metric [14]. 
The best fit was estimated using a genetic algorithm with 
the mean absolute error as the objective function.

Since the analysis was performed on historical data, the 
cyclist was not necessarily exercising at maximum inten-
sity for any one of the data points, so some performance 
measurements may have been below the true value. Un-
fortunately, the historical data included neither measure-
ments of blood lactate and heart rate to quantify the effort 
level nor the individual’s sleep and diet records to assess 
rest and recovery conditions. However, some knowledge 
of life events (e.g. illness) was available to eliminate data 
points that were not properly representative. The resulting 
data set is shown in Fig. 17.

Uncertainty estimation
To determine the predictive limitations of the model, an 

assessment was performed based on cross-validation. This 
involved fitting the model to subsets of the data and then 
evaluating how well it applied to the remaining data. Of the 
18 experimental trials, 9 unique trials were randomly select-
ed and the parameters were fit to those 9 points. This process 
of randomly selecting 9 unique trials, one for each degree 
of freedom, and fitting the parameters was repeated 333 
times in total to estimate the distribution of all possible sets 
of 9 unique trials. Using the parameters from the randomly 
selected trials and the initial conditions from the best fit to all 
trials, the model was integrated for the entire time period.

Results

The results showed that the model’s performance pre-
dictions fit the experimental data with small error, and fit-
ting to random subsets of data showed that some param-
eters had significantly more variation than others but the 
performance estimates were relatively consistent.

The results of fitting the model parameters to the ex-
perimental data are shown in Fig. 17 and Table 2. The 
performance values predicted by the model matched the 
performance measurements closely, with a mean absolute 

error of 3.7 Watts. For comparison, this is less than the 
advertised measurement error from the power meter.

The results of fitting the model parameters to random 
subsets of the data are shown in Figs. 18 to 20. Figure 18 
shows normalized histograms of the parameter values. Pa-
rameters τ1, τ2, k1, and k2 had significantly more variation 
than the others. Figure 19 depicts integration of the model 
using those parameter values. This 2-D histogram shows 
that there is a distribution in the performance predictions, 
but, except for a few regions, the variation is relatively 
small. Figure 20 depicts a histogram of the predicted final 
performance values nine days after the last experimental 
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Fig. 17. Plots of (a) the performance data and the predicted 
performance values using the optimal parameter set found by 
the genetic algorithm and (b) the experimental training stress 
measurements

Parameter Value Units
τ1 77 [Watts]α – 1 [day]
τ2 6.5 [Watts]β – 1 [day]
α 1.3 –
β 0.91 –
k1 0.19 [Watts][day]–1 [BikeScore]–1

k2 0.26 [Watts][day]–1 [BikeScore]–1

p0 208 [Watts]

Table 2. Best-fit parameter values corresponding to Fig. 17
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data point. These estimates are approximately normally 
distributed with a reasonably small spread.

Discussion

The results of fi tting the model to the data in Fig. 17 
are remarkable, given that the model makes predictions 
over a very long time period of 532 days.

There are a few possible causes of the errors between 
the performance predictions and the experimental data il-
lustrated in Fig. 17. These include: 1) measurement errors; 
2) the athlete exerting an inconsistent effort level; 3) vari-
ations in sleep and diet; and 4) limitations in the method 
of quantifying training stress. While the fi rst two causes of 
error could easily be reduced by testing in a more control-
led environment, the other two causes are phenomena that 
the model is not designed to capture. For example, varia-
tion in sleep and diet could affect the time constants for fi t-
ness gain and fatigue recovery, represented in the model as 
τ1 and τ2, respectively. Similarly, limitations in the stress 
metric could manifest as variations in the relative infl u-
ence of stress on fi tness and fatigue, i.e. k1 and k2. We hy-
pothesize that variation in sleep and diet and limitations in 
the stress metric infl uenced the relatively large variations 
in τ1, τ2, k1, and k2 shown in Fig. 18.

The fairly small variation in Figs. 19 and 20 shows that 
even with some uncertainty in the parameters, fi tting to 
randomly selected experimental trials can produce a rela-
tively consistent fi nal performance. This consistency in 
fi nal performance predictions is the most important crite-
rion for competitive athletes.

Conclusions

The nonlinear model presented in Eqs. (1) and (2) suc-
cessfully captures two essential effects, saturation and 
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Fig. 18. Density estimation of optimal parameters for 
randomly selected sets of trials. The horizontal axes were 
normalized by dividing by the mean parameter value, indicated 
by an overbar, and the vertical axes were normalized such 
that the total area under each histogram was 1
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over-training, which are missed by linear models. As a re-
sult, the model can be used to optimize training routines 
specific to an individual’s personal physiological charac-
teristics, constraints, and performance goals.

Simulations for a representative set of parameter val-
ues suggest several useful conclusions. First, a taper is 
necessary to achieve maximum performance on race day 
since fitness decays at a slower rate than fatigue. Second, 
multiple solutions exist to achieve optimal average long-
term performance, so if an individual is simply trying to 
maintain a regular schedule without a specific race day in 
mind, the individual can adjust their training schedule and 
maintain the same optimal performance. Third, different 
constraints provide various useful effects that alter the op-
timal daily training load. Fatigue-based constraints help 
limit stress during the middle of the training season but 
are not sufficient at the beginning if the starting fatigue is 
low. The ATL/CTL ratio and u/f ratio constraints provide 
a nice progression in training load except at the beginning 
when fatigue is low. They can also smooth the transition 
between fitness-based and fatigue-based constraints. A fit-
ness-based constraint can provide a nice progression in 
training stress, starting from the first day. Finally, a combi-
nation of all of these constraints provides the most realistic 
training strategy that most closely matches conventional 
wisdom.

After applying the model to historical data and fitting 
parameters, the results matched the data quite well but 
also show areas for future research. The results suggest 
that there are variations in τ1, τ2, k1, and k2 that are not 
captured by the model; these could be explained by diet, 
sleep, and limitations in the stress metric, but additional 
modeling and experimentation are necessary.

It is important to note that the experimental work in 
this study defined training stress and performance using 
specific metrics related to cycling. However, the models, 
training constraints, and algorithms presented in this study 
can consider a large variety of training stress and perform-
ance metrics across a wide range of exercise modes includ-
ing, but not limited to, running, cycling, and swimming.

The nonlinear model presented in this paper captures 
important physiological effects missed by previous mod-
els, and this gives it new capabilities to design optimal 
training strategies specifically tailored to individuals’ per-
sonal physiological characteristics, constraints, and per-
formance goals.
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